Find Sample Size for RMST with Covariate-Dependent Censoring (Analytic)
Source:R/dependent_censoring_analytical.R
DC.ss.analytical.RdIteratively finds required per-arm sample size for a target power,
using the same IPCW-based analytic variance as DC.power.analytical.
Usage
DC.ss.analytical(
pilot_data,
time_var,
status_var,
arm_var,
target_power,
linear_terms = NULL,
L,
alpha = 0.05,
n_start = 50,
n_step = 25,
max_n_per_arm = 2000
)Arguments
- pilot_data
A
data.framecontaining pilot study data.- time_var
Time variable.
- status_var
Event indicator (1=event, 0=censored).
- arm_var
Treatment indicator (1/0).
- target_power
Desired power.
- linear_terms
Optional covariates used in both models.
- L
RMST truncation time.
- alpha
Two-sided Type I error.
- n_start
Starting per-arm N.
- n_step
Step size for search.
- max_n_per_arm
Maximum per-arm N to search.
Value
A list with:
- results_data
data.frame with
Target_PowerandRequired_N_per_Arm.- results_plot
ggplot showing the search path.
- results_summary
data.frame summarizing the pilot arm effect.
Details
Uses a single censoring Cox model Surv(time, status==0) ~ linear_terms to form IPCW
and fits a weighted RMST regression. Treatment is excluded from the censoring model
by default. Competing risks are not modeled. Variance ignores uncertainty in \(\hat G\).
Note: dep_cens_status_var is accepted for API compatibility but ignored here.