Summarize a generated dataset and its simulation mechanism
Source:R/describe_data_generation.R
describe_generation.Rd
Given one element returned by load_recipe_sets()
(a list with data
and
a rich meta
list), this builds tidy tables describing the data-generating
process: model family, baseline parameters, linear predictor coefficients
(intercept / treatment / covariates), treatment assignment, and censoring.
Arguments
- set
A single element from
load_recipe_sets()
, i.e.list(data=<df>, meta=<list>)
.
Value
A list of data frames:
header
:n
,L
(analysis horizon; stored as attr"tau"
),model
,event_rate
,achieved_censoring
.baseline
: flattened baseline parameters.effects
: coefficients for intercept/treatment and covariates (and formula terms if used).treatment
: assignment mechanism and knobs.censoring
: censoring mode/target/admin time.covariates
: each generated covariate with its distribution and parameters.files
: paths to on-disk files (csv/rds/rdata) when available.
Examples
if (FALSE) { # \dontrun{
sets <- load_recipe_sets("checks/manifest.rds")
spec <- describe_generation(sets[[1]])
spec$header
spec$baseline
spec$effects
spec$treatment
spec$censoring
spec$covariates
spec$files
} # }